

Smart Anti-Infective Antisense Strategy and Molecules

INFECTIOUS DISEASES, ANIMAL ANTIMICROBIALS

Provisional patent
Filing Q1 2026

TRL 2

Research funds raised
Pending results in March 2026

Pre-clinical stage

In vivo efficacy, delivery validation, safety, scalability in progress

Performance

Antisense PNAs shown to downregulate toxin-related genes in vitro

Business Opportunity:
Licensing and Co-development

Market Opportunity:

Global market: \$30.8 billion USD in 2025 for Necrotic enteritis
CAGR: 7.2% for Necrotic enteritis

TIMELINE

→ Q4 2025

Q1 2026

Q1 2027

Fundamental
in vitro principles
demonstrated

Antisense PNAs
shown to downregulate
toxin-related genes

Clear biological
rationale and
differentiated mechanism

Completion of final
prototype & validation

Filing of
Provisional
Patent Application

In vivo efficacy & safety data

THE PROBLEM

Necrotic enteritis (NE), caused by *Clostridium perfringens*, remains a major economic and animal-health burden in the global poultry industry, with annual losses estimated at US\$5–6B.

Historically controlled through antibiotics, NE management is increasingly constrained by regulatory restrictions and antimicrobial resistance (AMR) concerns, while existing alternatives (vaccines, probiotics, feed additives) show variable efficacy.

There is a strong unmet need for non-antibiotic, targeted anti-infective strategies that reduce bacterial virulence while preserving host microbiota and limiting resistance development.

OUR SOLUTION

An antisense peptide nucleic acid (PNA) platform designed to suppress *Clostridium perfringens* virulence by selectively inhibiting genes involved in toxin production, without impacting bacterial viability.

The technology consists of CPP-conjugated antisense PNAs targeting key regulatory genes at the mRNA level, blocking toxin expression while preserving bacterial growth.

Key elements:

1. PNA antisense oligonucleotides targeting toxin-related mRNAs
2. Cell-penetrating peptide (CPP) conjugation to enhance bacterial uptake
3. Selective inhibition of virulence without bactericidal effect
4. In vitro proof-of-concept demonstrating reduced infectivity with preserved viability

MARKET

Target users include:

- Animal health companies
- Nutrition companies and
- Veterinary pharmaceuticals

Market application:

- Veterinary therapeutics for necrotic enteritis (poultry)
- Antibiotic-alternative solutions for animal health
- Anti-virulence strategies in livestock production
- Longer-term potential extension to other bacterial pathogens (animal or human health)

The innovation developed by Prof. Zhao's team targets the animal antimicrobial market (USD 678.5 million in 2022, 3.6% CAGR). More specifically, the necrotic enteritis treatment market is estimated at USD 30.8 billion in 2025 and is projected to reach USD 61.6 billion by 2035 (7.2% CAGR), with annual poultry industry losses of USD 5–6 billion.

TEAM

Xin Zhao
McGill, Lead PI

Mohamed Elfateh
McGill, Ph.D. candidate